Abstract

As well as being a cutting-edge technology, laser scanning is still developing rapidly. Laser scanners have an almost unlimited range of use in many disciplines of contemporary engineering, where precision and high quality of tasks performed are of the utmost importance. Among these disciplines, special attention is drawn to architecture and urban space studies that is the fields of science which shape the space and surroundings occupied by people, thus having a direct impact on people’s lives. It is more complicated to take measurements with a laser scanner than with traditional methods, where laser target markers or a measuring tape are used. A specific procedure must be followed when measurements are taken with a laser scanner, and the aim is to obtain three-dimensional data about a building situated in a given space. Accuracy, low time consumption, safety and non-invasiveness are the primary advantages of this technology used in the civil engineering practice, when handling both historic and modern architecture. Using a laser scanner is especially important when taking measurements of vast engineering constructions, where an application of traditional techniques would be much more difficult and would require higher time and labour inputs, for example because of some less easily accessible nooks and crannies or due to the geometrical complexity of individual components of a building structure.In this article, the author undertakes the problem of measuring and modelling architectural objects in the process of their valorisation, i.e. the enhancement of their functional, usable, spatial and aesthetic values. Above all, the laser scanning method, by generating results as a point cloud, enables the user to obtain a very detailed, three-dimensional computer image of measured objects, and to make series of analyses and expert investigations, e.g. of the technical condition (deformation of construction elements) as well as the spatial management of the surrounding environment while the measurements are being taken and processed. An example of the application of this technology provided in the article is a large-size building housing a swimming pool, which belongs to the University of Warmia and Mazury in Olsztyn, north-eastern Poland. With the help of a 3D laser scanner, it was possible to create a spatial model of the building, which is very useful for making inventories, preparing technical documents and evaluating the impact of a building on the surroundings and how its shape matches the urban spatial structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.