Abstract
BackgroundFor over 150 years, pathologists have relied on histomorphology to classify and diagnose neoplasms. Their success has been stunning, permitting the accurate diagnosis of thousands of different types of neoplasms using only a microscope and a trained eye. In the past two decades, cancer genomics has challenged the supremacy of histomorphology by identifying genetic alterations shared by morphologically diverse tumors and by finding genetic features that distinguish subgroups of morphologically homogeneous tumors.DiscussionThe Developmental Lineage Classification and Taxonomy of Neoplasms groups neoplasms by their embryologic origin. The putative value of this classification is based on the expectation that tumors of a common developmental lineage will share common metabolic pathways and common responses to drugs that target these pathways. The purpose of this manuscript is to show that grouping tumors according to their developmental lineage can reconcile certain fundamental discrepancies resulting from morphologic and molecular approaches to neoplasm classification.In this study, six issues in tumor classification are described that exemplify the growing rift between morphologic and molecular approaches to tumor classification: 1) the morphologic separation between epithelial and non-epithelial tumors; 2) the grouping of tumors based on shared cellular functions; 3) the distinction between germ cell tumors and pluripotent tumors of non-germ cell origin; 4) the distinction between tumors that have lost their differentiation and tumors that arise from uncommitted stem cells; 5) the molecular properties shared by morphologically disparate tumors that have a common developmental lineage, and 6) the problem of re-classifying morphologically identical but clinically distinct subsets of tumors. The discussion of these issues in the context of describing different methods of tumor classification is intended to underscore the clinical value of a robust tumor classification.SummaryA classification of neoplasms should guide the rational design and selection of a new generation of cancer medications targeted to metabolic pathways. Without a scientifically sound neoplasm classification, biological measurements on individual tumor samples cannot be generalized to class-related tumors, and constitutive properties common to a class of tumors cannot be distinguished from uninformative data in complex and chaotic biological systems. This paper discusses the importance of biological classification and examines several different approaches to the specific problem of tumor classification.
Highlights
For over 150 years, pathologists have relied on histomorphology to classify and diagnose neoplasms
Six issues in tumor classification are described that exemplify the growing rift between morphologic and molecular approaches to tumor classification: 1) the morphologic separation between epithelial and non-epithelial tumors; 2) the grouping of tumors based on shared cellular functions; 3) the distinction between germ cell tumors and pluripotent tumors of non-germ cell origin; 4) the distinction between tumors that have lost their differentiation and tumors that arise from uncommitted stem cells; 5) the molecular properties shared by morphologically disparate tumors that have a common developmental lineage, and 6) the problem of re-classifying morphologically identical but clinically distinct subsets of tumors
Summary: A classification of neoplasms should guide the rational design and selection of a new generation of cancer medications targeted to metabolic pathways
Summary
The separation between epithelial and non-epithelial tumors The separation of tumors into two large groups, epithelial and non-epithelial, is a popular device [27,28,29,30,31]. Tumors of endometrial and stromal cells share the same lineage in the developmental classification (sub-coelomic ductal) Like the kidney, this classification ignores morphologic differences (epithelial versus mesenchymal) and creates a grouping in concordance with the observed mixed epithelial/stromal manifestations of some uterine tumors. The search and discovery of this molecular marker was accomplished through asynchronous contributions from three biomedical realms: 1) pathologists, who found defined the morphologic subset of breast carcinoma known as secretory carcinoma of breast; 2) oncologists who validated the clinically distinct features of the tumor, and 3) molecular biologists who discovered the translocation that characterized the tumor It is a basic assumption of the developmental classification that morphologic and molecular features of tumors will both fall sensibly into classes determined by tumor cell lineage. This study examined only a few tumors, it described a method that allows any human tumor to be matched against a library of gene expression profiles collected from normal tissues at different stages of development
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have