Abstract

Recently, we have developed a 5-channel high-Tc SQUID system with one signal channel intended for rat magnetocardiography (MCG) in moderately shielded or "quiet" real environment. This system is an adapted version of a human MCG system which has been improved with respect to user-friendliness and stability. A dewar with a cold-warm distance of 7 mm and a refill cycle time of up to one week is utilized. The implemented high-Tc SQUIDs are single-layer devices with grain boundary junctions fabricated at KRISS with laser ablation on 10 mm × 10 mm STO substrates. In order to cancel environmental magnetic noise, three of the five SQUIDs are arranged to build an axial software first-order or second-order gradiometer with a base line of 35 mm. The other two SQUIDs are used for balancing. To overcome previous system instabilities, we have implemented an Earth field compensation for each SQUID. For this, the SQUIDs were mounted in capsules containing integrated field compensation coils. The three Earth field components are measured with an additional triaxial fluxgate, and compensated at the SQUID locations using the low-noise current source of the SQUID readout electronics. This way, the SQUIDs can be cooled and operated in a low residual field that improves system stability and reduces low-frequency SQUID noise. It is even possible to slowly move the dewar in the Earth field (dynamic field compensation). Different noise cancellation procedures were optimized and compared employing a periodic signal source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call