Abstract

Obesity and exposure to fine particulate matter (PM2.5) are risk factors for insulin resistance, to which physical exercise is the most powerful non-pharmacological strategy. However, public concern over whether exercise could be protective in a polluted environment exists. Therefore, evaluating the possible benefits of exercise in polluted conditions in different contexts (age, gender, and cardiometabolic health) is imperative. In this sense, muscle plays a major role in maintaining glucose homeostasis, and its oxidative status is closely affected during exercise. This study tested whether moderate aerobic training could alleviate the metabolic and oxidative impairment in the gastrocnemius induced by the combination of a high-fat diet (HFD) and PM2.5 exposure. Female mice (B6129SF2/J) received HFD (58.3% of fat) or standard diet, intranasal instillation of 20μg residual oil fly ash (ROFA: inorganic portion of PM2.5), or saline seven times per week for 19weeks. In the 13th week, animals were submitted to moderate training or remained sedentary. Trained animals followed a progressive protocol for 6weeks, ending at swimming with 5% body weight of workload for 60min, while sedentary animals remained in shallow water. Aerobic moderate training attenuated weight gain and glucose intolerance and prevented muscle and pancreatic mass loss induced by a HFD plus ROFA exposure. Interestingly, a HFD combined with ROFA enhanced the catalase antioxidant activity, regardless of physical exercise. Therefore, our study highlights that, even in polluted conditions, moderate training is the most powerful non-pharmacological treatment for obesity and insulin resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call