Abstract

ABSTRACTThe cause of the stability of long period superstructures is still something of a mystery. Typically, two very different models have been proposed: according to model I, the period of the superstructure (or modulation) is determined by lowering of the electronic energy resulting from the formation of a new Brillouin zone. According to model II, competing short-range interactions tend to produce long-period structures, the wavelength of which is determined by configurational entropy considerations. Model I is exemplified by the Sato and Toth theory, apparently applicable to long-period superstructures in Cu-Au, for example. Model II is exemplified by the Axial Next Nearest Neighbor Ising Model, for which a low-temperature free energy expansion has recently been given by Fisher and Selke. The latter model appears to apply to long-period superstructures in Ag3Mg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.