Abstract
We consider the free evolution of systems of granular particles whose dynamics is characterized by a collision rule which preserves the total momentum, but dissipates the kinetic energy. Starting from an inelastic version of a minimal model proposed by Ulam for a gas of Maxwell molecules, we introduce a new lattice model aimed at investigating the role of dynamical correlations and the onset of spatial order induced by the inelasticity of the interactions. We study, in one- and two-dimensional cases, the velocity distribution, the decay of the energy, the formation of spatial structures and topological defects. Finally, we relate our findings to other models known in other fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.