Abstract

We consider a Two-Dimensional Cutting Stock Problem (2DCSP) where stock of different sizes is available, and a set of rectangular items has to be obtained through two-stage guillotine cuts. We propose and computationally compare three Mixed-Integer Programming models for the 2DCSP developing formulations from the literature. The first two models have a polynomial and pseudo-polynomial number of variables, respectively, and can be solved with a general-purpose MIP solver. The third model, having an exponential number of variables, is solved via branch-and-price techniques. We conclude the paper describing the results of extensive computational experiments on a set of benchmark instances from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call