Abstract

Power Unit This work is devoted to the development of automated control models and methods of power change at WWER-1000 power unit to provide the most stable axial offset in the load-following mode. Improved multi-zone mathematical model of WWER1000 allows taking into account the energy release of 235U nuclei fission as well as 239Pu and includes a sub-model with distributed parameters. The automated control method of power change at WWER-1000 power unit that uses three control loops was proposed for the first time. The first loop maintains change of reactor power by controlling the boric acid concentration in the primary coolant. The second control loop maintains the required value of axial offset by controlling the position of 9th group control rods, and the third one maintains coolant temperature mode or steam pressure mode by controlling the main valve positions in the turbine generator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.