Abstract

We experimentally demonstrate a cascaded generation of a conventional dissipative soliton (DS) at 1020 nm and Raman dissipative solitons (RDS) of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity. The generated high-energy pulses are shown to be linearly-chirped and compressible to 200-300 fs durations for all wavelengths. Moreover, the pulses are mutually coherent that has been confirmed by efficient coherent combining exhibiting ~75 fs and <40 fs interference fringes within the combined pulse envelope of a DS with the first-order RDS and the second-order RDS respectively. The numerical simulation was performed with sinusoidal (soft) and step-like (hard) spectral filters and took into account the discreetness of the laser elements. Shown that even higher degree of coherence and shorter pulses could be achieved with hard spectral filtering. This approach opens the door towards cascaded generation of multiple coherent dissipative solitons in a broad spectral range (so-called dissipative soliton comb). The demonstrated source of coherent dissipative solitons can improve numerous areas such as frequency comb generation, pulse synthesis, biomedical imaging and the generation of coherent mid-infrared supercontinuum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call