Abstract

Nonlinear differential equations were used for formulating a mathematical model describing the dynamics of HIV interaction with CD4 T-cells which are considered to be activated or not activated during recognition of viral particles; in either case they are susceptible to HIV infection. The system's equilibrium points were found and local stability was determined for trivial equilibrium or the absence of infection based on the basic reproduction number. The model was used for numerical simulation to show infected cell and viral load patterns regarding the variations of some parameters. The model was then reformulated, considering a cytotoxic cellular immune response and numerical simulation was run again.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.