Abstract
Tuberculosis, an airborne disease affecting almost a third of the world’s population remains one of the major public health burdens globally, and the resurgence of multidrug-resistant tuberculosis in some parts of sub-Saharan Africa calls for concern. To gain insight into its qualitative dynamics at the population level, mathematical modeling which require as inputs key demographic and epidemiological information can fill in gaps where field and lab data are not readily available. A deterministic model for the transmission dynamics of multi-drug resistant tuberculosis to assess the impact of diagnosis, treatment, and health education is formulated. The model assumes that exposed individuals develop active tuberculosis due to endogenous activation and exogenous re-infection. Treatment is offered to all infected individuals except those latently infected with multi-drug resistant tuberculosis. Qualitative analysis using the theory of dynamical systems shows that, in addition to the disease-free equilibrium, there exists a unique dominant locally asymptotically stable equilibrium corresponding to each strain. Numerical simulations suggest that, at the current level of control strategies (with Malawi as a case study), the drug-sensitive tuberculosis can be completely eliminated from the population, thereby reducing multi-drug resistant tuberculosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.