Abstract

A model for estimating the radiation balance of alpine snowfields is presented. Shortwave and longwave downward flux densities are computed for sloping surfaces using a modified version of the two-stream radiative transfer scheme of Zdunkowski and others (1982). Surface albedo and thermal exitance values are estimated using Landsat-5 Thematic Mapper (TM) imagery and digital terrain data. The LOWTRAN7 radiative transfer code is utilized in order to remove atmospheric effects in satellite imagery as well as calculating solar irradiance within TM spectral bands, for the determination of the near-nadir reflectance of snow. Under a Lambertian assumption, near-nadir reflectance measurements obtained from a few TM bands are used to calculate the total hemispherical reflectance (albedo) of snow. The net all-wave radiation of snowfields is then simulated for the complete day on the same date as that of the Landsat overflight. The model is tested using Landsat TM data acquired in late June 1984, and results compared with field measurements acquired on Niwot Ridge, Colorado, U.S.A. Preliminary results are very encouraging but problems remain in the estimation of surface albedo from near-nadir satellite reflectance measurements of TM. These problems are discussed and recommendations for future model improvements are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.