Abstract

Blue cheese flavour development derives from complex biochemical reactions that depend on numerous factors including milk source, culture/strain selection, processing, and ripening conditions. Understanding volatile compound development during blue cheese ripening will help reduce production costs and facilitate quality improvements. Volatile compounds contribute to the characteristic flavours of the cheeses but ripening time predictions based on chemical data have proven difficult. The present study employed untargeted fingerprinting combined with linear and non-linear chemometric approaches to identify key volatiles for the modelling of Shenley Station blue cheese ripening times. Self-organizing maps and entropy-based feature selection along with partial least squares regression and variable identification coefficients were used to parse the linear and non-linear development behaviours of volatiles. The blue cheese ripening times were accurately modelled by twenty-three discriminant volatiles. The present study demonstrated that volatile fingerprints can be used to effectively model blue cheese ripening times using a non-linear chemometric approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.