Abstract
Understanding which volatile compounds discriminate between products can be useful for quality, innovation or product authenticity purposes. As dataset size and dimensionality increase, linear chemometric techniques like partial least squares discriminant analysis and variable identification (PLS-DA-VID) may not identify the most discriminant compounds. This research compared the performance of self-organizing maps and entropy-based feature selection (SOM-EFS) and PLS-DA-VID to identify discriminant compounds in 17 blue cheese varieties. A total of 172 volatiles were detected using headspace solid phase microextraction, gas chromatography and mass spectrometry, including 1-nonene and 2,6-dimethylpyridine, which were newly identified in blue cheese. Despite SOM-EFS selecting only 14 volatiles compared to 78 for PLS-DA-VID, SOM-EFS proved more effectively discriminant and improved the median five-fold cross-validated prediction accuracy of the model to 0.94 compared to 0.82 for PLS-DA-VID. These findings introduce SOM-EFS as a powerful non-linear exploratory data analysis approach in the field of volatile analytical chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.