Abstract

The problem of resolving or parameterising small-scale processes in oceanographic models and the extent to which small-scale effects influence the large scale are briefly discussed and illustrated for a number of cases. For tides and surges in near-shore regions, the advantages of using a graded mesh to resolve coastal and estuarine small-scale features are demonstrated in terms of a west coast of Britain unstructured mesh model. The effect of mesh resolution upon the accuracy of the overall solution is illustrated in terms of a finite element model of the Irish Sea and Mersey estuary. For baroclinic motion at high Froude number, the effect of resolving small-scale topography within a non-hydrostatic model is illustrated in terms of tidally induced mixing at a single sill, or two closely spaced sills. The question of how to parameterise small-scale non-linear interaction processes that lead to significant mixing, in a form suitable for coarser grid hydrostatic models, is briefly considered. In addition, the importance of topographically induced mixing that occurs in the oceanic lateral boundary layer, namely, the shelf edge upon the large-scale ocean circulation is discussed together with the implications for coarse grid oceanic climate models. The use of unstructured grids in these models to enhance resolution in shelf-edge regions in a similar manner to that used in storm surge models to enhance near coastal resolution is suggested as a suitable “way forward” in large-scale ocean circulation modelling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call