Abstract

AbstractMotivated by the phenomenon of Scotian Shelf Crossover events, the problem of a shelf flow that is interrupted by a strait is considered. Laboratory experiments in a rotating tank with barotropic and baroclinic flow over flat and sloping shelves confirm that the flow is steered by the bathymetric contours and mainly circumnavigates the gulf. In order to jump across the strait, as suggested by earlier theories, the flow must have unrealistically high Rossby numbers. However, the near bottom friction relaxes the bathymetric constraint and causes the formation of a peculiar jet crossing the strait diagonally. For the dissipation values such that a half of the transport goes around the gulf and half crosses the strait diagonally, the diagonal crossover jet becomes most evident. Numerical solutions for realistic values of the frictional parameter reproduce the results of the laboratory experiments and consideration of the actual Gulf of Maine bathymetry reproduces patterns similar to those observed by drift trajectories and in the satellite derived sea surface temperature fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call