Abstract
A multilayer sediment-water exchange model was used to evaluate the importance of bioturbation in the profundal sediments of L. Esrom. The temporal variation of the vertical distribution of sedimentary phosphorus fractions was modelled with an objective function of 1.50. Deviations between measured and simulated values occurred in the spring, where the measured pool of sedimentary phosphorus sharply declined in the surface sediments. The application of a model for the activity ofChironomus anthracinus based on biomass, oxygen consumption and temperature improved the model in the spring period. The downwards transport of easy-degradable surface sediments reduced the average release of sedimentary phosphorus from 12 mg P · m−2 · day−1 to 11 mg P · M−2 · day−1. The introduction of a similar model for the other important burrowing species in L. Esrom,Potamothrix hammoniensis, lowered the objective function to 1.37 and increased the average release to 12.5 mg P · m−2 · day−1. The minor role of bioturbation in sediment processes is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have