Abstract

Abstract The wettability alteration is the most prominent mechanism for a favorable effect of low salinity water flooding in enhanced oil recovery. It has been accepted that the surface charge at crude oil/brine and rock/brine interfaces significantly influences the interaction of the crude oil with rock surface and thus wettability changes. In this study, the interface characteristics were coupled with a solute transport model to simulate low salinity waterflooding in carbonate and sandstone reservoirs. The ionic transport and two- phase flow of oil and water equations were solved and coupled with IPhreeqc for geochemical calculations. The dissolution and precipitation of minerals were considered thorough thermodynamic equilibrium reactions in IPhreeqc. In addition, a triple layer surface complexation model was employed in IPhreeqc to predict electrokinetic properties of crude oil/brine and rock/brine interfaces. The wettability alteration was calculated based the adsorbed polar components of crude oil on minerals’ surface, which changes the relative permeability. The coupled model able to predict the spatiotemporal variation of ionic profiles, surface and zeta potentials, dissolution and precipitation of minerals, total disjoining pressure, and wettability index in addition to oil recovery for the injection of brines. The validity of the coupled model results was tested against PHREEQC in a single-phase flow without the presence of oil. Moreover, the modelling results were compared with the published experimental data for a single-phase flow in carbonate cores. A very good agreement between experimental data and modelling results was obtained. Furthermore, the coupled model was applied to predict ionic concentration, pH profile, and oil recovery in both carbonate and sandstone cores and verified with experimental data. The modelling results reproduce well the experimental data, suggesting that model captures the geochemical and interface reactions. Finally, the coupled model can be used to optimize brine composition for improved oil recovery in carbonate and sandstone reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.