Abstract

Mechanical modelling using the level-cut Gaussian random field approach has been employed to simulate the effect of radiation induced amorphization on the Young´s modulus, Poisson´s ratio and hardness of zircon (ZrSiO4). A good agreement with previous nanoindentation experiments has been achieved. Two percolation transitions occur at ~16% and ~84% amorphous volume fraction, leading to deviations from linearity in the evolution of the Young´s modulus. Interface regions between crystalline and amorphous areas stabilise the hardness for a considerable amount of amorphous fraction. The modelling approach is promising for predicting the intrinsic radiation damage related evolution of the mechanical properties of various materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.