Abstract
Due to the exceptional sweetness of its sap, sugar maple ( Acer saccharum Marsh.) is economically exploited at a commercial scale for maple syrup production in northeastern North America. Approximately 80% of world production is realised in the province of Quebec, Canada, where it is economically important for rural communities. Despite important financial investments in industrial infrastructure over recent decades, the maple syrup yield (ml of sap/tap/year) has followed a general declining trend over the last 15 years, presumably because of unfavourable climatic conditions. In this study, the relationship between climate and maple syrup yield by tap for the whole province was investigated. A multiple regression model using four monthly climatic variables (mean January and April temperature and maximum temperature in February and March) explained 84% of the annual variation in yield between 1985 and 2006. This model was used to predict sugar maple syrup yield using a data set of future climatic scenarios issued from a large number of global climate models driven by different scenarios of CO 2 emissions. The results show that sap yield of sugar maple should decrease by 15 and 22% in 2050 and 2090, respectively, as compared to the 1985–2006 period. The increase in mean April temperature was responsible for most of the reduction in yield. Assuming that the variables included in the prediction model are expressing a pattern of successive climatic conditions that could be displaced in time, i.e., that may happen sooner in the season, the maple syrup yield could be maintained at its current level if the period of sap production can shift in time to occur 12 days and 19 days sooner in 2050 and 2090, respectively. Other potential effects of climate change on sugar maple range and health that could also affect the yield of maple syrup production in the future were not addressed in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.