Abstract

The deleterious impact of pollution point sources on the surrounding environment and human has long been a focal point of environmental research. When considering the local atmospheric dispersion of semi-volatile organic compounds (SVOCs) around the emission sites, it is essential to account the dynamic process for the gas/particle (G/P) partitioning, which involves the transition from an initial state to a steady state. In this study, we have developed a model that enables the prediction of the dynamic process for G/P partitioning of SVOCs, particularly considering the influence from emission. It is important to note that the dynamic processes of the concentrations of SVOCs in particle phase (CP) and in gas phase (CG) differ significantly. These differences arise due to the influence of two critical factors: particulate proportion of SVOCs in the emissions (ϕ0) and octanol-air partitioning coefficient (KOA). The validity of our model was assessed by comparing its predictions of the extremum value of the G/P partitioning quotient (KP) with the results obtained from the steady-state model. Remarkably, the characteristic time (tC), used to evaluate the timescale required for SVOCs to reach steady state, demonstrated different variations with KOA for CP and CG. Additionally, the values of tC were quite different for CP and CG, which were markedly influenced by ϕ0. For some SVOCs with high KOA values, it took approximately 35 h to reach steady state. Furthermore, it was found that the time to achieve 95 % of steady state (t95 ≈ 3tC) could reach approximately 105 h. This duration is sufficient for chemicals to disperse from their emission site to the surrounding areas. Therefore, it is crucial to consider the dynamic process of G/P partitioning in local atmospheric transport studies. Moreover, the influence of ϕ0 should be incorporated into future investigations examining the dynamic process of G/P partitioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.