Abstract
Semi-volatile organic compounds (SVOCs) are present in the gas phase, particulate phase and settled dust in the indoor environment, resulting in human exposure through different pathways. Sometimes, SVOCs are only measured in a single phase because of practical and/or financial constraints. A probabilistic method proposed by Wei et al. for the prediction of the SVOC concentration in the gas phase from the SVOC concentration in the particulate phase was extended to model the equilibrium SVOC concentrations in both the gas and particulate phases from the SVOC concentration measured in settled dust. This approach, based on the theory of SVOC partitioning among the gas phase, particulate phase, and settled dust incorporating Monte Carlo simulation, was validated using measured data from the literature and applied to the prediction of the concentrations of 48 SVOCs in both the gas and particulate phases in 3.6 million French dwellings where at least one child aged 6 months to 6 years lived. The median gas-phase concentration of 15 SVOCs, i.e., 5 phthalates, 2 organochlorine pesticides, 4 polycyclic aromatic hydrocarbons (PAHs), 2 synthetic musks, dichlorvos, and tributyl phosphate, was found to be higher than 1 ng/m3. The median concentration of 5 phthalates in the particulate phase was higher than 1 ng/m3. The impacts of some physical parameters, such as the molar mass and boiling point, on the SVOC partitioning among the different phases were quantified. The partitioning depends on the activity coefficient, vapor pressure at the boiling point, entropy of evaporation of the SVOCs, and the fraction of organic matter in particles. Thus, the partitioning may differ from one chemical family to another. The empirical equations based on regressions allow quick estimation of SVOC partitioning among the gas phase, particulate phase, and settled dust from the molar mass and boiling point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.