Abstract

ABSTRACT In this contribution, we show that the distortion gradient plasticity recently proposed by our group, characterised by a higher-order plastic potential leading to reliable predictions under non-proportional loading, can predict experimental data of literature on the cyclic torsion of copper wires of diameter ranging from 18 to 42 . To reach our goal, we plug our recent constitutive proposal in a framework that we have previously developed for the torsion problem, which is based on the pivotal theory established in 2004 by Gurtin, relying on Nye's dislocation density tensor to describe size effects in micron-scale metal plasticity. We implement the new model in a finite element code and identify its parameters by resorting to the Coliny evolutionary algorithm within the software Dakota.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.