Abstract

The application of standard mathematical techniques for the solution of mass transport equations, in the case of advection that is caused by the pulsating movement of crack walls in the case of corrosion fatigue, can be very time consuming. This problem arises, due to the requirement that the time step that must be employed, when solving the non-stationary equations numerically, must be significantly smaller than the period of oscillation. For overcoming these time-consuming limitations, a simple algorithm, which is based on eliminating the convective term from the equations of mass transfer in the pulsating slab by a suitable change of variables, was developed. The estimation of the advection effect on the rate of corrosion fatigue has been performed for the cases of diffusion and mixed kinetic control at high frequencies of applied stress. It is shown that, in many cases, it is possible to use codes that were developed for describing stress corrosion cracking, i.e. for the case of mass transfer without advection at zero loading frequency, to predict corrosion fatigue crack propagation rate, by simply substituting an effective crack length. Numerical calculations that have been performed in this work also show that the method developed here yields results that are applicable not only to the elevated frequencies, but to the any arbitrary frequency from 0 to ∞ for estimating corrosion fatigue crack propagation rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.