Abstract

Polymers used as insulating materials are increasingly popular in many different fields. In electrical engineering - electronics, polymers are used in high-voltage transmission cables, capacitors, transformers, or as part of an embedded system in the IGBT module thanks to its superior thermal and electrical insulation properties. One of the disadvantages of polymers is the possible accumulation of space charge in the material volume for a long time, leading to an increase in the electric field compared to the original design value. Charge transport models in polymer materials have been increasingly developed to predict the conduction mechanisms under thermal-electrical stress. In this study, from a finite volume method (FVM), the authors developed a charge transport model in low density polyethylene (LDPE) based on the finite element method (FEM). The simulation results of this model are also compared to experimental results and to the FVM model under different electric fields for LDPE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call