Abstract

Reactive Rotational Moulding (RRM) is the best process for producing large hollow plastic parts without weld lines. Constant quality in technical parts requires the process to be mastered by controlling on-line the main physical phenomena. However, the main drawback of RRM is poor control of the process due to the high number of influent parameters. In these conditions, the optimization of the process is quite complex. The aim of this work is to simulate the reactive fluid flow during RRM with Smoothed Particle Hydrodynamics (SPH) solver in two dimensions (2D) and three dimensions (3D) taking into account surface tension force. To implement this force, the interface is tracked explicitly using algorithm developed by Barecasco et al. (2013) and Terissa et al. (2013) and the reconstruction of curve or surface boundary by different interpolation or surface construction technique with Lagrangian interpolation and fitting circle methods in 2D and spherical regression in 3D, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.