Abstract

In convective air-cooled heat sink applications with space constraints, corrugated geometries can be used as in-duct sound absorbing structures offering lower duct-flow resistance than other geometries such as block-shape, wedge-shape geometries. Sound wave propagation through this geometry is presented using a simple 1-D acoustic model. Using the model, acoustic performance of corrugated sample is evaluated in terms of its transmission loss in dB. Thermal resistance and pressure drop values are also reported and compared with acoustic performance as function of number of corrugations and length of corrugated sample. A rectangular corrugated geometry has alternate inlet and outlet channels separated by porous walls. Sound propagation across this arrangement is modelled by extending prior model from literature with similar geometries. Prior model by Allam and Åbom (2005) is highly symmetric about the channels and porous walls are modelled by simple steady flow resistance equation. In current work, appropriate considerations are taken into account for the configuration of corrugated geometries suitable to general heat sink applications and sound wave propagation through porous walls is predicted by using Johnson-Champoux-Allard (jca) model. The porous walls at ends of the geometry are modelled as in acoustically series-parallel network combinations. Further, effect of heat sink temperature on sound wave propagation is also explored using the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call