Abstract
Although there are many simulation tools in various energy fields, due to the differences in technical characteristics in various energy fields, simulation techniques cannot be directly integrated to meet the development needs of the energy internet. Facing different application requirements, different modelling ideas and methods as well as solution algorithms are proposed in this chapter. For modelling, simulation and analysis of quasi-steady-state and long-term issues of the energy internet, a standard procedure is suggested for developing concepts or modifying existing systems, with underlying issues discussed. For the study of dynamics and transients, modelling methods of components and networks under different energy conditions are first discussed. The node equation in matrix form is used in the power grid, and the node pressure equation and branch flow equation are adopted in a thermal network and gas pipeline network. Then, considering the interweaving and interaction of long dynamic processes of wide time scale and phased evolution in the energy internet, this chapter proposes a three-layer multi-mode phased hybrid simulation framework to solve the dynamic and transient coupling and interactions between devices and adjacent networks of different energy types in the energy internet. Then, some existing simulation software suites and tools in energy engineering fields and academic circles are introduced in detail. Possible problems are discussed, including determining how to select software suites and tools with embedded models, combining different tools or developing and integrating new modules or tools. Finally, this chapter enumerates some typical component models in the energy internet and presents simulation results based on several cases. A brief analysis of a park energy internet case shows the correctness of the modelling and solution considerations mentioned above.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have