Abstract

Carbon capture and storage (CCS) presents a short-term option for significantly reducing the amount of carbon dioxide (CO2) released into the atmosphere. National Grid initiated the COOLTRANS research programme to consider the CCS pipeline transportation of high-pressure dense-phase CO2, including the development and application of a mathematical model for predicting the sonic near-field dispersion of pure CO2 following pipeline venting or failure. In Part I (Wareing et al., 2015a) validation of this numerical model against experimental data was considered, with reasonably good agreement quantitatively and qualitatively demonstrated for a rupture of a 0.15m external diameter pipeline. In this second part, the model is applied to the rupture of a 96km pipeline with a nominal 0.61m external diameter, the same as that proposed in the Don Valley CCS Project. In the base-case, six snapshots of the flow dispersing into dry air are numerically simulated. Integrated mass and momentum fluxes exiting the crater are calculated, with the intention that they can be directly employed as source conditions for far-field dispersion simulations. The amount of solid CO2 deposited in the crater is estimated through particle tracking techniques and six sensitivity studies vary crater properties.▪

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call