Abstract
Several promising CO2 capture technologies, like oxy-combustion, adsorption and membranes, feature a purity of the captured CO2 stream which is insufficient for the storage site or the transport system. In these cases, a CO2 Purification Unit (CPU) is required to lower the concentrations of O2, N2 and Ar at the limits allowed by the storage site/transport system. In this work, the available CO2 Purification processes have been reviewed and the six main schemes have been simulated in Aspen Plus and optimized. Their performance have been ranked based on six selected key performance indicators: total annual cost, Specific cost per ton of captured CO2, specific energy consumption, recovery, purity, and O2 concentration in the purified CO2. The techno-economic optimization is repeated for different carbon tax values and for three different feed streams compositions. The results of the optimization show that flash-based CPUs cannot meet the requirements for CO2 storage due to a high concentration of O2 (>1000 ppm) but they feature a low specific cost (5.8–25.9 €/tonCO2 depending on the feedgas and plant size), low specific energy consumption (124.9–436.1 kJ/tonCO2) and acceptable recovery (94.60–99.46 %). The distillation-based CPU can meet the requirements for CO2 storage, but these CPUs have the highest cost (52–112 % higher than flash-based CPU) and the lowest recovery. The optimal CPUs are the ones which combine both distillation column and flash separation. These CPUs meet the oxygen requirements for CO2 storage (<10 ppm) while providing the highest purity (99.997–99.999 %), high recovery (90.61–99.32 %) at a limited cost (6.1–36.0 euro/tonCO2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.