Abstract

AbstractThe tuning of the self-propagating reaction is studied theoretically by introducing a non-reactive material between two reactive material elements. For the study, the Ni/Al bilayer system was chosen. The Ni/Al elements were placed on a silicon wafer covered with a 1-µm-thick silicon dioxide. The spaces between the multilayer reactive material elements were filled with different non-reactive materials covering a wide range of thermal properties. On top of this heterogeneous layer, a 1-µm-thick sealing layer was placed consisting of the filler material. The carried out two-dimensional simulations demonstrated that embedding material allows to scale the ignition transfer time and the heat propagation velocity. For example, for a transfer length of 1 µm, the ignition time can be tuned from nano- to microseconds. Consequently, in contrast to previous results embedding materials allow scaling the properties of the self-propagating reaction in heterogeneous reactive material systems. Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call