Abstract
Mathematical models of radionuclide distribution and transport in the environment have been developed to assess the impact on people of routine and accidental releases of radioactivity from a variety of nuclear activities, including: weapons development, production, and testing; power production; and waste disposal. The models are used to estimate human exposures and doses in situations where measurements have not been made or would be impossible or impractical to make. Model results are used to assess whether nuclear facilities are operated in compliance with regulatory requirements, to determine the need for remediation of contaminated sites, to estimate the effects on human health of past releases, and to predict the potential effects of accidental releases or new facilities. This paper describes the various applications and types of models currently used to represent the distribution and transport of radionuclides in the terrestrial and aquatic environments, as well as integrated global models for selected radionuclides and special issues in the fields of solid radioactive waste disposal and dose reconstruction. Particular emphasis is placed on the issue of improving confidence in the model results, including the importance of uncertainty analysis and of model verification and validation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have