Abstract

Much work has been devoted to analysing thermodynamic models for solid dispersions with a view to identifying regions in the phase diagram where amorphous phase separation or drug recrystallization can occur. However, detailed partial differential equation non-equilibrium models that track the evolution of solid dispersions in time and space are lacking. Hence theoretical predictions for the timescale over which phase separation occurs in a solid dispersion are not available. In this paper, we address some of these deficiencies by (i) constructing a general multicomponent diffusion model for a dissolving solid dispersion; (ii) specializing the model to a binary drug/polymer system in storage; (iii) deriving an effective concentration dependent drug diffusion coefficient for the binary system, thereby obtaining a theoretical prediction for the timescale over which phase separation occurs; (iv) calculating the phase diagram for the Felodipine/HPMCAS system; and (iv) presenting a detailed numerical investigation of the Felodipine/HPMCAS system assuming a Flory-Huggins activity coefficient. The numerical simulations exhibit numerous interesting phenomena, such as the formation of polymer droplets and strings, Ostwald ripening/coarsening, phase inversion, and droplet-to-string transitions. A numerical simulation of the fabrication process for a solid dispersion in a hot melt extruder is also presented. Statement of SignificanceSolid dispersions are products that contain mixtures of drug and other materials e.g. polymer. These are liable to separate-out over time – a phenomenon known as phase separation. This means that it is possible the product differs both compositionally and structurally between the time of manufacture and the time it is taken by the patient, leading to poor bioavailability and so ultimately the shelf-life of the product has to be reduced.Theoretical predictions for the timescale over which phase separation occurs are not currently available. Also lacking are detailed partial differential equation non-equilibrium models that track the evolution of solid dispersions in time and space. This study addresses these issues, before presenting a detailed investigation of a particular drug-polymer system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.