Abstract

Large-eddy and mixing length model simulations of convective flows over hills have been performed for a range of hill slopes and stabilities. For low hills, the fractional speed-up and normalized pressure drag are shown to decrease with increasing instability. For hills steep enough to cause separation in neutral conditions, the effect of convection is to reduce the size and strength of the separated bubble, although the normalized pressure drag is found to be almost independent of stability. Finally, the ability of effective roughness length parametrizations to represent the effects of the hills in convective conditions is assessed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call