Abstract

A local atomic structure around titanium positions in Ti-bearing hibonite (CaAl12O19) has been studied. The structural models of substitution of different substitution defects Ti–Al in hibonite by titanium atoms have been considered. Optimization of structural models of hibonite has been done by means of density functional theory calculations using pseudopotential approximation as implemented in VASP 5.3 code. Gibbs free energies analysis has shown that models of substitution of M2 and M4 aluminum positions by titanium atoms are the most probable. For the most probable structural models of Ti-bearing hibonite theoretical X-ray absorption near-edge structure (XANES) spectra near the titanium K edge have been calculated. Significant differences in theoretical XANES spectra calculated for different structural models with non-optimized and optimized atomic structure have been demonstrated. Changes in the intensity of pre-edge structure of TiK XANES spectra for different substitution models of aluminum by titanium have been observed which relate to different titanium coordination in structural models. Energy shift of spectral features towards lower energy for optimized models implies increase of interatomic distances in local surroundings of Ti absorbing atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.