Abstract
AbstractThe three-parameter hydraulic model of snow avalanche dynamics including the coefficients of dry and turbulent friction and the coefficient of new-snow-mass entrainment was investigated. The ‘Domestic’ avalanche site in Elbrus region, Caucasus, Russia, was chosen as the model avalanche range. According to the model, the fixed avalanche run-out can be achieved with various combinations of model parameters. At the fixed value of the coefficient of entrainment me , we have a curve on a plane of the coefficients of dry and turbulent friction. It was found that the family of curves ( me is a parameter) are crossed at the single point. The value of the coefficient of turbulent friction at the cross-point remained practically constant for the maximum and average avalanche run-outs. The conclusions obtained are confirmed by the results of modelling for six arbitrarily chosen avalanche sites: three in the Khibiny mountains, Kola Peninsula, Russia, two in the Elbrus region and one idealized site with an exponential longitudinal profile. The dependences of run-out on the coefficient of dry friction are constructed for all the investigated avalanche sites. The results are important for the statistical simulation of avalanche dynamics since they suggest the possibility of using only one random model parameter, namely, the coefficient of dry friction, in the model. The histograms and distribution functions of the coefficient of dry friction are constructed and presented for avalanche sites Nos 22 and 43 (Khibiny mountains) and ‘Domestic’, with the available series of field data.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have