Abstract

In this paper, we propose models for single, coupled, L and T type on-chip global interconnect lines. Generalised models for different interconnect geometries are formed by distributed RLGC parameters using state space approach. Interconnect delay for a single interconnect line is estimated using our model and compared with other models. It is found that the error in the estimation of the delay is less in our model. Also interconnect performance metrics for the proposed models are obtained for 65 nm, 90 nm, 130nm and 180nm technology nodes based on Predictive Technology Model (PTM) values. In case of coupled, L and T section interconnects, the effect of mutual inductance and coupling capacitance is considered in addition to the distributed RLGC parameters. The proposed models are generic in nature and can be used to characterise any interconnect structure. Further, the state matrices for any length of interconnect can be obtained by considering suitable number of rlgc segments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.