Abstract

ABSTRACTA combination of statistical techniques of analyses were used to evaluate the potential of International Commission on Illumination (CIE) lightness (L*), redness (a*) and yellowness (b*) colour space system and near-infrared spectroscopy (NIRS) to assess surface changes in relation with progressive decay of beech (Fagus grandifolia Ehrh.) by wood-inhabiting lignicolous fungi Inonotus hispidus, Trametes versicolor and Xylaria polymorpha. pH effects based modelling predictions of beech earlywood and latewood tissues were also included. Multivariate analysis techniques included response surface optimization, sample-specific standard error of prediction (SEP) method and projection to latent structures partial least squares (PLS) regression. Strong statistical relationships were derived for pH predictions with R2 values ranged: from 0.77 to 0.84 for I. hispidus; from 0.77 to 0.84 for T. versicolor and from 0.83 to 0.91 for X. polymorpha. R2 values for CIE-based L*a*b* colour space measurements ranged: from 0.43 to 0.69 (L*), 0.66 to 0.76 (a*), 0.42 to 0.53 (b*) for I. hispidus; from 0.59 to 0.69 (L*), 0.69 to 0.79 (a*), 0.64 to 0.79 (b*) for T. versicolor; and from 0.51 to 0.75 (L*), 0.89 to 0.94 (a*), 0.85 to 0.89 (b*) for X. polymorpha. Multivariate technical analysis (response surface analysis, sample-specific SEP, PLS regression) of CIE L*a*b* system and NIRS results should be able to characterize pH effects and surface changes of wood spalted by lignicolous fungi as a quick and reliable non-destructive method relevant to wood-spalting concerns and the forest products industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call