Abstract
In the last decades, mesh-free methods for simulating various cutting processes have been used very widely as they can eliminate numerical problems in the simulation of material failure and large plastic deformations. This paper deals with the results from modelling the orthogonal cutting of AISI 1045 steel using smoothed particle hydrodynamics (SPH) method. Moreover, it is determined how the parameters of the SPH solver such as initial smoothing length, initial particle density and coefficient for the timestep increase affect the prediction error for the values of cutting force and chip compression ratio as well as computing time. The optimum values of the SPH solver parameters are determined by minimising an objective function. The best balance between the prediction error of machining variables and computing time is achieved for an initial particle density of 40 μm and a coefficient for the timestep increase of 0.4.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have