Abstract
Microstructural evolution in the hot strip after finishing and subsequent accelerated cooling on the runout table has been modelled in order to assess their suitability for further processing. Transient heat transfer and kinetics of phase change comprising austenite to ferrite plus pearlite have been coupled to ascertain temperature profile, taking into accout the heat generated during phase change. Johnson‐Mehl‐Avrami relation together with Scheil's rule of additivity have been invoked. Several process parameters such as, coefficient of heat transfer, temperature at the exit of finishing stand, thickness and the speed of strip have been varied to determine their influence on the extent of phases engendered on the runout table. It has been demonstrated that greater spreadout in cooling arrangement with relatively lower heat transfer coefficient ensures homogeneity in microstructure. Cooling from comparatively higher finishing temperatures may result in greater microstructural uniformity. Two grades of steel – namely 0.05C‐0.23Mn‐0.015Si and 0.08C‐0.37Mn‐0.06Si – were chosen to carry out plant trials to validate the model. Special features of the microstructure have been brought out and the mechanical properties have been correlated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.