Abstract

A geomechanical approach to modeling deformation and seepage is presented. Three stages of modeling are described: choice of an appropriate mechanical model and its adaptation to the case in question, experimental determination of parameters of the model, simulation of processes of seepage for particular configurations of the well. The applied model allows describing the main specific characteristics of mechanical behavior of the collector: the influence of the pore pressure on deformation; the influence of not only shear but also comprehensive stresses and pore pressure on the transition to inelastic behavior; the appearance of inelastic volumetric deformation and its nontrivial dependence on the stress state; the anisotropy of elastic, strength and seepage properties; non-obvious dependence of permeability on the stress strain state. The model unites essential characteristics of Hill’s plastic flow theory for anisotropic materials and the Drucker–Prager theory for inelastic deformation of soils. The results of experimental determination of the involved parameters obtained using true triaxial loading system for the collector of Vladimir Filanovsky field in the Caspian Sea are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call