Abstract

The paper presents the recent progress made by the authors on modelling of macrosegregation in steel ingots. A two-phase macrosegregation model was developed that incorporates descriptions of heat transfer, melt convection, solute transport, and solid movement on the process scale with microscopic relations for grain nucleation and growth. The formation of pipe shrinkage at the ingot top is also taken into account in the model. Firstly, a recently proposed numerical benchmark test of macrosegregation was used to verify the model. Then, the model was applied to predict the macrosegregation in a benchmark industrial-scale steel ingot. The predictions were validated against experimental data from the literature. Furthermore, macrosegregation experiment of an industrial 53-t steel ingot was performed. The simulation results were compared with the measurements. It is indicated that the typical macrosegregation patterns encountered in steel ingots, including a positively segregated zone in the hot top and a negative segregation in the bottom part of the ingot, are well reproduced with the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call