Abstract

This paper studies fast fueling of gaseous hydrogen into large hydrogen (H2) tanks suitable for maritime applications. Three modeling methods have been developed and evaluated: (1) Two-dimensional computational fluid dynamic (CFD) modeling, (2) One-dimensional wall discretized modeling, and (3) Zero-dimensional modeling. A detailed 2D CFD simulation of a small H2-tank was performed and validated with data from literature and then used to simulate a large H2-tank. Results from the 2D-model show non-uniform temperature distribution inside the large tank, but not in the small H2-tank. The 1D-model can predict the mean temperature in small H2-tanks, but not the inhomogeneous temperature field in large H2-tanks. The 0D-model is suitable as a screening tool to obtain rough estimates. Results from the modeling of the large H2-tank show that the heat transfer to the wall during fast filling is inhibited by heat conduction in the wall which leads to an unacceptably high mean hydrogen temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call