Abstract
Within the framework of combined finite-discrete element method (FDEM), we propose a novel and efficient semi-adaptive contact activation approach (semi-ACAA). The semi-ACAA adaptively activates contact calculations for continuum solid elements around the cohesive element which has just been subjected to shear softening while its softening function has just satisfied a prescribed threshold. The semi-ACAA is implemented in a three-dimensional (3D) FDEM code parallelized based on general-purpose graphic processing units (GPGPU) to model dynamic fracture processes of marbles in dynamic Brazilian tensile strength (BTS) and uniaxial compressive strength (UCS) tests. The semi-ACAA not only overcomes spurious fracturing mode associated with FDEM simulations using ACAA but also is more physically sound and computationally efficient compared with brute-force contact activation approach (BCAA), which has been prevalent in FDEMs with intrinsic cohesive zone model (ICZM)-based cohesive elements. Furthermore, it is proven that the spurious fracturing mode is caused by unphysical movements of mesh due to missing contacts during the shear softening of cohesive elements instead of the sudden activation of contact force calculations as indicated in some literature. Finally, a series of simulations of the dynamic BTS and UCS tests conducted by split Hopkinson pressure bar (SHPB) facility reveals that, if the threshold is set to around unity, not only the spurious fracturing mode can be overcome but also the modelling precision of stress waves in intact rocks can be improved. The speed-up times of semi-ACAA compared with BCAA are between 1.23 and 13.5 depending on the intensity of shear cracking in the simulations including mixed-mode cracking. Since the proposed semi-ACAA is simple and can be easily implemented into any FDEM codes with ICZM-based cohesive elements, it is expected to accelerate future developments and applications of FDEM with ICZM-based cohesive elements in rock dynamics such as drilling and blasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Rock Mechanics and Mining Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.