Abstract

We investigate the influence of silica filler content in SBR rubber on the friction behaviour on wet and dry surfaces (rough granite and asphalt) at different velocities experimentally and by simulation, using a recently developed friction model for rough fractal surfaces. The wet friction is shown to be related to pure hysteresis effects, whereas the dry friction also involves adhesion, which is traced back to crack opening mechanisms. It is shown that by calculating relaxation time spectra, the number of free fit parameters can be reduced. These fit parameters are found to vary systematically with filler content for both substrates, and a physical explanation is given. Still, the results of simulations can well be adapted to the measurements. Generally, friction increases with filler concentration on wet substrates. The dry (adhesion) friction turns out to establish a high velocity plateau that becomes lower but more pronounced with increasing filler amount. This is in agreement with experimental master curves for the friction coefficient found in literature, and directly related to other simulation output like the decreasing and flattening of the true contact area with increasing filler contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.