Abstract
Abstract We present an overview of models of low pressure, non-thermal gas discharges as commonly used in plasma processing. Significant progress has been made in the past decade towards the goal of a self-consistent model of the electrical properties of discharges, whether d.c., r.f. or microwave discharges. These models are based on solutions of the charged particle transport equations coupled with Poisson's equation for the electric field, and provide the space and time distribution of charged particle densities, current densities and electric field or potential. Some of the most sophisticated models also provide the electron and ion velocity distribution functions in the discharge at any point in space or time. It is now possible to describe reasonably accurately the physical properties of a discharge (including the plasma, the electrode regions and the walls) for two-dimensional cylindrical geometries, even for complex electrode configurations involving e.g. a hollow cathode or anode. A survey of the available models is presented here and we illustrate the current state of the art by results from one- and two-dimensional models of d.c., and transient discharges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.