Abstract
Corrosion of mild steel in aqueous solutions containing carbon dioxide was modelled under condition that protective iron carbonate films formed on the steel surface. In this model, the film form on the steel surface due to precipitation of iron carbonate from saturated solution. The precipitation of iron carbonate produces a porous layer on the steel surface, reducing the diffusion of species toward the steel surface. If the precipitation rate is high, the porosity decreases and the mass transport becomes slower. Therefore, formation of protective layers on the steel surface reduces the corrosion rate. In this case, the corrosion processes are controlled with diffusion of species. The model was verified against published experimental data. The model can predict the thickness and the porosity of the film formed on the steel surface and also the corrosion rate of steel under deposited layer. The effects of some parameters such as Fe2+ concentration and temperature on film thickness and corrosion rate were investigated. The developed model is a solid approach for prediction of corrosion rate in conditions that precipitation of iron carbonate occurs on the steel surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.