Abstract

A new vertical parallel-flow, hot-wall, multiple-wafer reactor has been developed for silicon low pressure chemical vapour deposition (LPCVD). It is an annular reactor with a large isothermal zone in which the wafers take place. A two-dimensional mathematical model has been elaborated for fluid dynamic and mass transfer simulations with both gaseous phase and solid interface reactions. This model has been used to simulate silicon deposition on square wafers, for various operating conditions, i.e., pressures, temperatures, reactant gas concentrations and inter wafers distances. It has been observed that, in comparison with that of conventional horizontal LPCVD reactors, the production of silylene (SiH2) radicals in the homogeneous phase, due to larger forced convection phenomenon in the inter wafer space, plays a more important role on the silicon deposition rate on substrate surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.