Abstract

Robot-assisted needle-based surgeries are sought to improve many operations, from brain surgery to spine and urological procedures. Force feedback from a needle can provide important guidance during needle insertion. This paper presents a new modelling method of needle force during insertion into soft tissue based on finite element simulation. This is achieved by analysing the results of a series of needle inserting experiments with different insertion velocities. The forces acting on the needle are then modelled based on the experimental results. A simulation is implemented to verify the designed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.