Abstract
An inspection and replacement policy for a protection system is described by a mathematical model that incorporates multiple aspects of maintenance quality. A three-state component failure model is assumed, with a defective state preceding failure. The quality of maintenance intervention is modelled by supposing that inspections may misclassify defects (false positives and false negatives) and further that an inspection may induce a defect. The quality of replacement is modelled by supposing that a component arises from a heterogeneous population, composed of weak and strong items and with the mixing parameter determining quality. Isolation valves used in water distribution systems motivate the model development, and a case study is considered in this context. We evaluate the impact of these aspects of the quality of maintenance upon cost and production losses. Defect induction is found to be a key determinant of the cost-optimal policy. The proposed model allows us to verify conditions that justify investment in higher quality maintenance, and thus to provide guidance for prioritization of this investment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.